
Intuitive	distributed	algorithms
with	F#

Natallia Dzenisenka @nata_dzen
Alena	Hall @lenadroid

“A	tour	of	a	variety	of	intuitivedistributed	algorithms	used	
in	practical	distributed	systems.

…	and	how	to	prototype	with	F#	for	better	understanding”

Why distributed	algorithms?

Sorting	algorithms

Not	everyone needs	to	
know...

…	But	it	can	be	really	useful

Things

Will

Break

No	blind	troubleshooting

TUNING

Edge cases
…	or	even	create	your	own	new	Distributed	System	***

***	WARNING!

Riak

Cassandra

HBase

Abstract	words	actually	
mean	concrete	algorithms

Liveness Safety

No	“To	Be	Or	Not	To	Be”
Will	show	algorithms	 that	provide	different	 types	of	guarantees	 for	

different	 purposes

System	should	be	ready	for	events,	changes	and	failures!

● A	node	can	die		 [FAILURE	DETECTION]
● Node	can	join			 [GOSSIP,	ANTI-ENTROPY]
● Recover	from	failure			 [SNAPSHOTS,	CHECKPOINTING]

And	a	whole	bunch	of	other	things!

Contents
üIntro	
Ø Consistency	Levels
o Gossip
o Consensus
o Snapshot
o Failure	Detectors
o Distributed	Broadcast
o Summary

Consistency	Levels

$100

$100

Balance	=	$100

Good	situation!

$100 $100

$100

$100

$100

$100

$100

$0 Bad	situation

Balance	=	100$

$0	balance

Good	news:	we	can	choose
the	level	of	consistency

More	consistency	
→		

Less	availability

Let’s	look	at	different	
consistency	levels	and	how	

they	affect a distributed	system

Writer	client

X

x

x

x x

x

Reader	client

Writes	to	any	node

The	weakest	consistency	level

Reads	from	any	node

Weak	Consistency

Advantages: High	availability,	low	latency

Trade-off: Low	consistency	←	High	propagation	 time

No	guarantee	of	 successful	update	propagation

X

x

x

x x x

Reader	client

Reads	from	any	node

x

Writer	client

Reducing	propagation	latency

Writes	to	any	node

NODE	FAILS

X

x

x

x x x

Reader	client

Reads	from	any	node

x

Writes	to	any	node

Writer	client

Hinted	
handoff

Hinted	Handoff

*	Faster	update	propagation	after	failures

Coordinator	fails

Hint	file	corrupted

X

x

x

x x x

Reader	client

Reads	from	any	node

x

Writes	to	any	node

Writer	client

Read	repair

Read	Repair

Hash	gathering

Can	we	get	stronger consistency?

X

x

x

x x

Reader	client

x

Writes	to	any	node

Writer	client

x

Reads	from	any	node

Quorum

Quorum
W – number	of	replicas	where	clients	synchronously	 writes	 [WRITE	QUORUM]
R – number	of	replicas	from	which	client	reads	 [READ	QUORUM]
N – number	 of	replicas

• W	>	N/2
• W	+	R	>	N

By	following	the	rule	we	ensure	that	at	least	1	replica	will	return	fresh	data	
during	read	operations.

Quintuplets	and	approximate	estimation	of	Cassandra	partition	size	

How	to	prevent inconsistency?

Centralization

Consensus
…	to	be	continued

Consistency	levels	in	real	distributed	systems

• Cassandra and Riak use weak consistency level protocol for metadata exchange,
hinted-handoff and read repair techniques to improve consistency.

• You can choose read and write quorums in Cassandra.

• HBase usesmaster/slave asynchronous replication.

• Zookeeper writes are also performed by master.

Contents
ü Intro	
ü Consistency	Levels
Ø Gossip
o Consensus
o Snapshot
o Failure	Detectors
o Distributed	Broadcast
o Summary

Gossip

Common	use	cases	of	Gossip

• Failure	detection: determining	which	nodes	are	down

• Solving	inconsistency

• Metadata	exchange:	 i.e.	changes	in	distributed	DB	topology

• Cluster	membership:	 new,	failed	or	recovered	 nodes

• Many	more

Use	Gossip	when	system	needs	to	be...

• Fast	and	scalable
• Fault-tolerant	
• Extremely	decentralized

Or	when	it	has	huge	number	of	nodes

General	gossip
Endless	 process	when	each	node	periodically	 selects	N	others	nodes	 and	sends	information	 to	them

General	gossip

Node	#1 Node	#2 Node	#3 Node	#4 Node	#5

List	of	
known	
nodes:
#2
#3
#4
#5

List	of	
known	
nodes:
#1
#3
#4
#5

List	of	
known	
nodes:
#1
#2
#4
#5

List	of	
known	
nodes:
#1
#2
#3
#5

List	of	
known	
nodes:
#1
#2
#3
#4

Key:	42
Value: “status:	green”

Key:	42
Value:	“status:	red”

Key:	42
Value: “status:	green”
Timestamp:	1357589992

Key:	42
Value:	“status:	red”
Timestamp:		1357625899

Anti-entropy	repair
Solves	the	state	of	inconsistently	 replicated	data

Read	 runs	on	reads…	

Anti-entropy	 can	run	constantly,	periodically	
or	can	be	initiated	manually.

X
x

x

x x x

Reader	client

x

Writer	client

Read	
repair

Hash	
gatherig

Merkle	trees	for	Anti-entropy

Tree data structure which has
hashes of data on the leaves
and hashes of children on non-
leaves.

Cassandra,	Riak	and	DynamoDB	
use	anti-entropy	technique	using	
Merkle	trees.

In	case	of	hash	inequality	- exchange	of	actual	data	takes	place

Merkle	trees

Cassandra
Short-lived in-memory

Riak
On-disk	persistent

Rumor	mongering

• Step	1 • Step	2

Message:
Node	#5	is	down!

Message:
Node	#5	is	down!

Message:
Node	#5	is	down!

Message:
Node	#5	is	down!

Real	world	use	cases	of	Gossip
Riak

- Communicates ring state and bucket properties around the cluster

Cassandra
- Propagates information about database topology and other metadata
- For failure detection

Consul
- To discover new members and failures and to perform reliable and fast event broadcasts for events

like leader election. Uses SERF (based on “SWIM: Scalable Weakly-consistent Infection-style Process
GroupMembership Protocol”)

Amazon S3
- To propagate server state to the system

NOT gossip:	one	node	is	overloaded

Trade-offs	with	Gossip

• Propagation	latency	may	be	high

• Risk	of	spreading	wrong	information

• Weak	consistency

General	Gossip	example

CODE

Contents
üIntro	
üConsistency	Levels
üGossip
Ø Consensus
o Snapshot
o Failure	Detectors
o Distributed	Broadcast
o Summary

Consensus

“In	a	fully	asynchronous	system	there	is	no	
consensus	solution	that	can	tolerate	one	or	more	
crash	failures	even	when	only	requiring	the	non	
triviality	property”	

- Fischer	Lynch	Paterson	 [FLP]	result

Real	world	applications	of	Consensus

● Distributed coordination services, i.e. log coordination

● Locking protocols

● State machine and primary-backup replication

● Distributed transaction resolution

● Agreement to move to the next stage of a distributed algorithm

● Leader election for higher-level protocols

● Many more

PAXOS
…	a	protocol	for	state-machine	 replication	in	an	asynchronous	
environment	that	admits	crash-failures

Proposers Acceptors Learners

“Prepare”	request
Proposer	chooses	a	new	proposal	number	N

Proposer	asks	acceptors	to:

1. Promise to	never	accept	a	proposal		#	<	N
2. Return	a	highest	accepted	proposal		#	<	N

“Accept”	request
If	majority	of	acceptors	responded,

X =	value	of	the	highest	#	proposal	received	from	acceptors

Proposer	issues	an	accept	request:
● With	a	Proposal	Number	N
● And	a	value	X

Accept	
Request

Multi	Paxos
Deciding	on	one	value	- running	one	round	of	Basic	Paxos	…
Deciding	on	a	sequence	of	values	- running	Paxos	many	times

...Right?

Multi	Paxos
Deciding	on	one	value	- running	one	round	of	Basic	Paxos	…
Deciding	on	a	sequence	of	values	- running	Paxos	many	times

Almost.

We	can	optimize consecutive	Paxos	rounds	by	skipping	
prepare	phase,	assuming	a	stable	leader

Cheap	Paxos
Based	on	Multi-Paxos

To	tolerate	f failures:

● f	+	1 acceptors	(not	2f	+	1,	like	in	traditional	Paxos)

● Auxiliary	acceptors	in	case	of	acceptor	failures

Fast	Paxos
Based	on	Multi-Paxos

Reduces	end-to-end	message	delays
for	a	replica	to	learn	a	chosen	value

Needs	3f	+	1 acceptors	instead	of	2f	+	1

Vertical	Paxos
Reconfigurable

● Enables	reconfiguration	while	state	machine	
is	deciding	on	commands

● Uses	auxiliary	master	for	reconfiguration	ops

● A	special	case	of	Primary-Backup	protocol

ZAB
Zookeeper’s	Atomic	Broadcast

A	bit	stricter	ordering	guarantees…

If	leader	fails,	new	leader	cannot	arbitrarily	reorder	uncommitted
state	updates,	or	apply	them	starting	from	a	different	initial	state

Contents
ü Intro	
üConsistency	Levels
üGossip
üConsensus
Ø Snapshot
o Failure	Detectors
o Distributed	Broadcast
o Summary

Snapshots

Prototyping	a	Chandy-Lamport	
Snapshot	in	F#

● Assumes	that	channels	are	FIFO

● All	nodes	can	reach	each	other

● All	nodes	are	available

● Basic	Messages	for	regular	data

● Marker	Messages	for	snapshots

● Any	node	can	initiate	a	snapshot	at	any	moment

Lena
$50

Maggie
$0

Natasha
$75

Initial	state	of	the	system

Lena
$45

Maggie
$0

Natasha
$65

$5

$10

$45

Lena
$45

Maggie
$0

Natasha
$65

marker marker

$5

$10

Network	delay	for	$10	
message

$0

Lena
$45

Maggie
$0

Natasha
$70

marker

$10

marker

marker

$45

Lena	→	Maggie	=	{empty}	

Network	delay	for	$10	message

Lena	→	Maggie	=	{empty}	

Maggie	→	Lena	=	{empty}	

Lena	→	Natasha	=	{empty}	
Maggie	→	Natasha	=	{empty}	

$0 $70

Lena
$45

Maggie
$0

Natasha
$70

$10

$45

marker

marker

$10

$45

Messages
to	snapshot:

Maggie	→	Lena	=	{empty}	

$0 $70

Lena
$45

Maggie
$0

Natasha
$70

$45

marker

Lena	→	Natasha	=	{empty}	
Maggie	→	Natasha	=	{empty}	

Lena	→	Maggie	=	{empty}	

marker

$45
Natasha	→	Lena	=	{	empty}	

$0 $70

Lena
$45

Maggie
$0

Natasha
$70

Lena	→	Natasha	=	{empty}	
Maggie	→	Natasha	=	{empty}	Natasha	→	Maggie	=	{														}

Lena	→	Maggie	=	{empty}

$10

Maggie	→	Lena	=	{empty}	

CODE

Contents
ü Intro	
üConsistency	Levels
üGossip
üConsensus
üSnapshot
Ø Failure	Detectors
o Distributed	Broadcast
o Summary

Failure	detectors

Failure	detectors	are	critical	for:

• Leader	election

• Agreement	(e.g.	Paxos)

• Reliable	Broadcast

• And	more

How	are	faults	detected?		

Heartbeat	failure	detection

#1 #2

I	am	healthy!

I	am	healthy!

I	am	healthy!

300	ms

300	ms

300	ms

500	ms

300	ms

300	ms

300	ms

Node	failed	☹ No	message

Suspected
Nodes	List:

#1

Completeness
Strong
Eventually	all	failed	processes	are	
suspected	by	all	correct	once.

Weak
Eventually	all	failed	processes	are	
suspected	by	at	least	one	correct	
one.

#1

#2

#4

#3
#5

Failed:
#2,	#3

Failed:
#2,	#3

Failed:
#2,	#3

#1

#2

#4

#3
#5

Failed:
#4

Failed:
none

Failed:
#2,	#3

Detects	every	process	as	failed

#1

#2

#4

#3
#5

Failed:
#2,	#3,	
#4,	#5

We	can	say	that	accuracy…

Restricts	the	mistake or
Limits	number	of	false	positives or,	more	precisely
Limits	number	of	nodes	that	are	mistakenly	suspected	by	the	correct	nodes

Strong Weak Eventually	strong Eventually	weak

Accuracy

Accuracy
Strong
All	correct	processes	are	never	
suspected

Weak
At	least	1	correct	process	is	never	
suspected

#1

#2

#4

#3
#5

Failed:
#2

Failed:
none

Failed:
#3

#1

#2

#4

#3
#5

Failed:
#4

Failed:
#1,	#2

Failed:
#3

*		Correct	node	#5	isn’t	 in	any	suspected	 list	ever

Eventual	Strong

After	some	point	in	time,
all	correct	processes	are	never	
suspected

Eventual	Weak

After	some	point	in	time,
at	least	1	correct	process	 is	never	
suspected

#1

#2

#4

#3
#5

Failed:
#2

Failed:
none

Failed:
#3

#1

#2

#4

#3
#5

Failed:
#4

Failed:
#1,	#2

Failed:
#3

*		Nodes	 could	have	had	wrong	suspicions	 in	the	past

Accuracy

Failure	detector	classes

Perfect	Failure	Detector

• Strong	Completeness	+	Strong	Accuracy

• Possible	only	in	synchronous	system

• Uses	timeouts (waiting	time	for	a	heartbeat	arrival)

Eventually	Perfect	Failure	Detector

• Strong	Completeness	+	Eventual	Strong	Accuracy

• Timeouts	are	adjusted	to	be	maximum	or	average

• Eventually	timeout	will	be	that	big	that	all	assumptions	will	be	correct

Eventually Perfect	Failure	Detector

#1 #2

I	am	healthy!

300	ms

700ms

300	ms

Node	failed	☹ No	message

Timeout	to	wait:	300	ms
List	of	suspected	nodes:	 #1

#1

300	ms

Timeout	to	wait:	700ms
List	of	suspected	nodes:	 none

I	am	healthy!

Node	recovered	☺

Failure	Detectors	in	Consensus

Failure	detectors	are	present	in	
almost	every	distributed	system

SWIM
Scalable	Weakly-consistent	 Infection-style	process	group	Membership	protocol

Strong completeness and configurable accuracy

1. Initiator picks random node from its membership list and sends a message to it.
2. If a chosen node doesn’t send acknowledgement after some time, initiator sends

ping request to other M randomly selected nodes to ask to send message to
suspicious node.

3. All nodes try to get acknowledgement from suspicious node and forward it to the
initiator. If none of the M nodes gets an acknowledgement, initiator marks the
node as dead and disseminates about failed node.

Choosing bigger number M of nodes you make accuracy bigger.

Contents
ü Intro	
üConsistency	Levels
üGossip
üConsensus
üSnapshot
üFailure	Detectors
Ø Distributed	Broadcast
o Summary

Distributed	Broadcast
Sending	message	to	every	node	 in	the	cluster

Messages	can	be	lost
Nodes	can	fail

Various	broadcast	algorithms	help	us	to	choose	between	consistency	of	
the	system	and	its	availability.

Best-effort	Broadcast

• Ensures	the	delivery	of	the	message	to	all	of	the	correct	processes	 if	
sender	doesn’t	fail	during	message	exchange.

• Messages	are	sent	using	perfect	point-to-point	connection	(no	
message	loss,	no	duplicates).

#1

#3

#2
#4

#5
X	=	15

X	=	15

X	=	15X	=	15

Reliable	Broadcast

• If	any	correct node delivers	 the	message,	all	correct	nodes should	
deliver	the	message

• Normal	scenario	results	in	O(N)	messages

• Worst-case	scenario	(when	processes	fail	one	after	another)	— O(N)	

steps	with	O(N2)	messages.

• Uses	failure	detector

Message	has	sender	ID

#1

#3

#2
#4

#5Sender:	#1
X	=	15

Sender:#1
X	=	15

X=15X=15
Sender:#1
X	=	15

Sender:#1
X	=	15

Nodes	constantly	check	sender

#1

#3

#2
#4

#5Are	you	ok?Are	you	ok?

If	failure	detected	– message	is	relayed

#1

#3

#2
#4

#5

They	can	even	fail	one	by	one,	 other	nodes	will	detect	failure	and	relay	message

Sender:	#5
X	=	15

Sender:	#5
X	=	15

Sender:	#5
X	=	15

If failure detector marks sender failed when it’s not, unnecessary
messages would be sent, that would impact performance, not
correctness.

However, if process will not indicate failure, then needed messages
won’t be sent.

Some reliable broadcasts do not use failure detectors…

What if a node processes a message, and then fails?...

Uniform	Reliable	Broadcast

If	any	node (doesn’t	matter	correct	or	crashed) delivers	 the	message,	
all	correct	nodes should	deliver	 the	message.

Works	with	failure	detector,	this	way	nodes	don’t	wait	for	the	reply	
from	failed	nodes	forever.

#1

#3

#2
#4

#5X	=	15

X=15

X	=	15 X	=	15

Got	
X	=	15	
from:
#1

Got	
x	=	15	
from:
#1

Got	
X	=	15	
from:
#1

Got	
X	=	15	
from:
#1

Node	that	initiated	the	broadcast	sends	
messages	to	all	of	nodes.	Each	node	that	
gets	the	message,	relays	it	and	considers	
pending	 for	now.

All-Ack	Algorithm

#1

#3

#2
#4

#5

X	=	15

X	=	15

X	=	15
X	=	15

Got	
x=15	
from:
#1

Got	
x=15	
from:
#1,	#5

Got	
x=15	
from:
#1,	#5

Got	
x=15	
from:
#1,	#5

Got	
x=15	
from:
#5

Each	node	keeps	 track	of	nodes	 from	
which	it	received	current	message.

When	process	 gets	current	
message	from	all	of	the	
correct	nodes,	 it	considers	
message	delivered.

Contents
ü Intro	
üConsistency	Levels
üGossip
üConsensus
üSnapshot
üFailure	Detectors
üDistributed	Broadcast
Ø Summary

Now	I	know	distributed	algorithms

Natallia Dzenisenka @nata_dzen

Alena	Hall @lenadroid

Thank	you	and	reach	out!

