Intuitive distributed algorithms

with F#

Natallia Dzenisenka
Alena Hall

“A tour of a variety of intuitive distributed algorithms used
in practical distributed systemes.

... and how to prototype with F# for better understanding”

Why distributed algorithms?

b

>

Play All

>

Random

>

Nearly Sorted

>

Reversed

>

Few Unique

>

Insertion

>

Selection

> >

Bubble Shell MaTga

v

v

|“|I‘||“| ‘II‘| ""I||||||”“N‘ N“N"uulﬂ'" -nu'uu“mp-

L

[

i

hg

]"

(RN T[T
"

Ll

Sorting algorithms

I
: v
[+
©

\f

| ™

II'|||*|”|

v

Quick

'

v
I e e

Quick3

[

Not everyone needs to
know...

... But it can be really useful

No blind troubleshooting

Edge cases

... or even create your own new Distributed System ***

*** WARNING!

Riak

HIGH AVAILABILITY SCALABILITY FAULT TOLERANCE OPERATIONAL SIMPLICITY

Big Data applications Performance scales easily Reads and writes non- Adds automation and
require data all of the to meet your application stop, regardless of efficiency to minimize
time. requirements. outages or network manual processes.

partitions.

Cassandra

What is Cassandra?

The Apache Cassandra database is the right choice when you need scalability and high availability without compromising performance. Uinearscalability’and proven fault-tolerance on
commodity hardware or cloud infrastructure make it the perfect platform for mission-critical data.Cassandra's support for replicating across multiple datacenters is best-in-class, providing
lower latency for your users and the peace of mind of knowing that you can survive regional outages.

PROVEN FAULT TOLERANT PERFORMANT DECENTRALIZED SCALABLE
Cassandra is in use at Constant Data is automatically Cassandra consistently There are noisingle) Some of the largest production
Contact, CERN, Comcast, eBay, replicated to multiple outperforms popular points of failure: There deployments include Apple's, with over
GitHub, GoDaddy, Hulu, Instagram, nodes for fault-tolerance. NoSQL alternatives in are no network 75,000 nodes storing over 10 PB of
Intuit, Netflix, Reddit, The Weather Replication across benchmarks and real bottlenecks. Every node data, Netflix (2,500 nodes, 420 TB, over
Channel, and over 1500 more multiple data centers is applications, primarily in the cluster is identical. 1 trillion requests per day), Chinese
companies that have large, active data supported. Failed nodes because of fundamental search engine Easou (270 nedes, 300
sets. can be replaced with no architectural choices. TB, over 800 milion requests per day),
downtime. and eBay (over 100 nodes, 250 TB).
DURABLE YOU'RE IN CONTROL ELASTIC PROFESSIONALLY SUPPORTED
Cassandra is suitable for applications Choose between Synchronous or” Read and write throughput both Cassandra support contracts and
that can't afford to lose data, even when @synchronous replication'for each increase linearly as new machines are services are available from third parties.

an entire data center goes down.

update. Highly available asynchronous
operations are optimized with features
like Hinted Handoff and Read Repair.

added, with no downtime or interruption
to applications.

HBase

Welcome to Apache HBase™

Apache © HBase™ is the Hadoop @ database, a distributed, scalable, big data store.

Use Apache HBase™ when you need random, realtime read/write access to your Big Data. This project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware.
Apache HBase Is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable: A Distributed Storage System for Structured Data @ by Chang et al. Just as Bigtable leverages the distributed
data storage provided by the Google File System, Apache HBase provides Bigtable-like capabilities on top of Hadoop and HDFS.

Download

Click here @ to download Apache HBase™.

Features

Linear and modular scalability.

Strictly consistent reads and writes.

Automatic and configurable sharding of tables

Automatic failover support between RegionServers.

Convenient base classes for backing Hadoop MapReduce jobs with Apache HBase tables.
Easy to use Java AP for client access.

Block cache and Bloom Filters for real-time queries.

Query predicate push down via server side Filters

Thrift gateway and a REST-ful Web service that supports XML, Protobuf, and binary data encoding options
Extensible jruby-based (JIRB) shell

Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia; or via JMX

Abstract words actually
mean concrete algorithms

Liveness Safety

o u

u) rou

5

.-Q

- : i
YOU HAVE TO CHOOSE BETWEEN
_ SAFETY AND LIVENESS

No “To Be Or Not To Be”

Will show algorithms that provide different types of guarantees for
different purposes

System should be ready for events, changes and failures!

® A nodecandie FAILURE DETECTION]
e Node can join (GOSSIP, ANTI-ENTROPY]
® Recover from failure SNAPSHOTS, CHECKPOINTING]

And a whole bunch of other things!

Contents
‘/Intro

» Consistency Levels

o Gossip

Consensus

Snapshot

Failure Detectors
Distributed Broadcast
Summary

O O O O O

Consistency Levels

Balance = $100

Good situation!

<

%
Ly

/
A

Bad situation

Good news: we can choose
the level of consistency

More consistency

9
Less availability

Let’s look at different
consistency levels and how
they affect a distributed system

The weakest consistency level

Writer client

Reads from any node

Reader client

Weak Consistency

Advantages: High availability, low latency

Trade-off: Low consistency € High propagation time

No guarantee of successful update propagation

Reducing propagation latency

Writer client

\

\

~
N
~
~
N
~
N
~
N ~
~
\ A ~
AN \\
N
N
\ \?

Reads from, any node

Reader client

e
4
7
e
e
e
4
4
4

Hinted Handoff

Writer client

'l
7

Reads from\any node
* Faster update propagation after failures ‘

Reader client

~

\ ~
!mtEd /,

handeff-

% Coordinator fails %

(o
s

Hint file corrupted

]
ol

Read Repair

Writer client

~
~
~
~
~
~
~
- \\
AN
Vd N \\
\
\
\
\
\
1
1
1
1
1
1
~ N ,
\\\ \\ 1 , ,
~ . ~ l ,
Hash gathering "~ \ ,
T~ N \ ’
S~ Reads fro Wi K
R N
~ ~
\\\ ~
s\\

-~ o
-
-
-

Reader client

Can we get stronger consistency?

Quorum

Writer client

ds from\any|/node

Reader client

Quorum

[WRITE QUORUM]
[READ QUORUM]

W — number of replicas where clients synchronously writes

R — number of replicas from which client reads

N — number of replicas

® w>nN/2
® W+R>N

By following the rule we ensure that at least 1 replica will return fresh data
during read operations.

Quintupletsand approximate estimation of Cassandra partition size

= Z sizeOf(Ck,') W Z sizeOf(cs_,-) -+ Nr X (8+ Z sichf(Ca) +Z SiZCOf(CCl))

i J l

partition

How to prevent inconsistency?

Centralization

Consensus

... to be continued

Consistency levels in real distributed systems

Cassandra and Riak use weak consistency level protocol for metadata exchange,
hinted-handoff andread repair techniques to improve consistency.

You can choose read and write quorums in Cassandra.

HBase uses master/slave asynchronous replication.

Zookeeper writes are also performed by master.

\/ Intro

v Consistency Levels

» Gossip

Consensus

Snapshot

Failure Detectors
Distributed Broadcast
Summary

O O O O O

Contents

Gossip

Common use cases of Gossip

Failure detection: determining which nodes are down

Solving inconsistency

Metadata exchange: i.e. changes in distributed DB topology

Cluster membership: new, failed or recovered nodes

Many more

Use Gossip when system needs to be...

e Fast and scalable
e Fault-tolerant
e Extremely decentralized

Or when it has huge number of nodes

General gossip

Endless process when each node periodically selects N others nodes and sends information to them

General gossip

Node #3

Node #5

Node #4

Node #2

Node #1

Key: 42
Value: “status: green”

Key: 42
Value: “status: red”

Key: 42
Value: “status: green”
Timestamp: 1357589992

Key: 42
Value: “status: red”
Timestamp: 1357625899

Anti-entropy repair

Solves the state of inconsistently replicated data

Writer client

X‘/ *X \\\A
Read %¢ runs on reads... V\Ci NP
Hash~~. > \} /

Read . gatherig ~~s¢" ¥

repair
Reader client

Anti—entropy% can run constantly, periodically
or can be initiated manually.

Merkle trees for Anti-entropy

Tree data structure which has

hashes of data on the leaves
and hashes of children on non-
leaves.

Cassandra, Riak and DynamoDB
use anti-entropy technique using
Merkle trees.

In case of hash inequality - exchange of actual data takes place

Merkle trees

Cassandra Riak
Short-lived in-memory On-disk persistent

Rumor mongering

* Step 1 ‘ * Step 2

Message: Message:

Node#5 is down! ‘ Node #5 is down! ’

Message:
Node #5 is down!

Message:
Node #5 is down!

‘l

Real world use cases of Gossip

Riak
- Communicates ring state and bucket properties around the cluster

Cassandra
- Propagates information about database topology and other metadata
- For failure detection

Consul

- Todiscover new members and failures and to perform reliable and fast event broadcasts for events
like leader election. Uses SERF (based on “SWIM: Scalable Weakly-consistent Infection-style Process

Group Membership Protocol”)
Amazon S3

- Topropagate server state to the system

NOT gossip: one node is overloaded

Trade-offs with Gossip

¢ Propagation latency may be high

® Risk of spreading wrong information

® Weak consistency

General Gossip example

. S
Alenas-MacBook-Pro: ChandyLamportFSharp lenok$ fsharpi GossipNodel.fsx B Alenas-MacBook-Pro:ChandyLamportFSharp lenok$ fsharpi GossipNode2.

fsx
] 0

5. bash

Alenas-MacBook-Pro: ChandyLamportFSharp lenok$ fsharpi GossipN Alenas-MacBook-Pro:ChandyLamportFSharp lenok$ fsharpi GossipNode4.fsx Alenas-MacBook-Pro: ChandyLamportFSharp lenok$ fsharpi GossipNodeS.fsx [| gl
ode3. fsx —

CODE

Contents
‘/Intro

‘/Consistency Levels
‘/Gossip

» Consensus

o Snapshot

o Failure Detectors

o Distributed Broadcast
o Summary

Consensus

“In a fully asynchronous system there is no
consensus solution that can tolerate one or more
crash failures even when only requiring the non
triviality property”

Fischer Lynch Paterson [FLP] result

Real world applications of Consensus

e Distributed coordination services, i.e. log coordination

® Locking protocols

e State machine and primary-backup replication

e Distributed transaction resolution

® Agreement to move to the next stage of a distributed algorithm
® Leader election for higher-level protocols

e Many more

PAXOS

... a protocol for state-machine replication in an asynchronous
environment that admits crash-failures

Production use of Paxos [edit]

« The Petal project from DEC SRC was likely the first system to use Paxos, in this case for widely replicated global information (e.g., which machines are in the system).[2°]

« Google uses the Paxos algorithm in their Chubby distributed lock service in order to keep replicas consistent in case of failure. Chubby is used by BigTable which is now in
production in Google Analytics and other products.

« The Infinit peer-to-peer file system relies on Paxos to maintain consistency among replicas while allowing for quorums to evolve in size.

« Google Spanner and Megastore use the Paxos algorithm internally.

« The OpenReplica replication service& uses Paxos to maintain replicas for an open access system that enables users to create fault-tolerant objects. It provides high
performance through concurrent rounds and flexibility through dynamic membership changes.

« IBM supposedly uses the Paxos algorithm in their IBM SAN Volume Controller product to implement a general purpose fault-tolerant virtual machine used to run the configuration
and control components of the storage virtualization services offered by the cluster.¢?ation needed]

« Microsoft uses Paxos in the Autopilot cluster management service A from Bing.

« WANdisco have implemented Paxos within their DConE active-active replication technology.[z‘]

« XtreemFS uses a Paxos-based lease negotiation algorithm for fault-tolerant and consistent replication of file data and metadata.[??]

« Heroku uses Doozerde which implements Paxos for its consistent distributed data store.

« Ceph uses Paxos as part of the monitor processes to agree which OSDs are up and in the cluster.

« The Clustrix distributed SQL database uses Paxos for distributed fransaction resolutioni.

« Neo4j HA graph database implements Paxos, replacing Apache ZooKeeper from v1.9

« VMware NSX Controller uses Paxos-based algorithm within NSX Controller cluster.

« Amazon Web Services uses the Paxos algorithm extensively to power its platform. 23]

« Nutanix implements the Paxos algorithm in Cassandra for metadatae.

o Apache Mesos uses Paxos algorithm for its replicated log# coordination.

« Windows Fabric used by many of the Azure services make use of the paxos algorithm for replication between nodes in a cluster

« Oracle NoSQL Database leverages Paxos-based automated fail-over election process in the event of a master replica node failure to minimize downtime.[24]

The P2

Abstrac®

0s 2gor ™

LN

Proposers Acceptors Learners

“Prepare” request

Proposer chooses a new proposal number N
Proposer asks acceptors to:

1. Promise to never accept a proposal #< N
2. Return a highest accepted proposal #< N

“Accept” request

If majority of acceptors responded,

X = value of the highest # proposal received from acceptors

Proposer issues an accept request:
e With a ProposalNumber N
e AndavalueX

Accept
Request

Multi Paxos

Deciding on one value - running one round of Basic Paxos ...
Deciding on a sequence of values - running Paxos many times

...Right?

Multi Paxos

Deciding on one value - running one round of Basic Paxos ...
Deciding on a sequence of values - running Paxos many times

Almost.

We can optimize consecutive Paxos rounds by skipping
prepare phase, assuming a stable leader

Paxos Made Moderately Complex 42:3

Table |. Types of Processes in Paxos

Process Type | Description | Minimum Number

Maintains application state
Receives requests from clients
Asks leaders to serialize the requests so all replicas see

Replica the same sequence f+1
Applies serialized requests to the application state
Responds to clients

Leader Receives requests from replicas f+1

Serializes requests and responds to replicas
Acceptor Maintains the fault tolerant memory of Paxos 2f+1
Note: f is the number of failures tolerated.

Cheap Paxos

Based on Multi-Paxos

To tolerate f failures:
e f+ 1 acceptors (not 2f + 1, like in traditional Paxos)

e Auxiliary acceptors in case of acceptor failures

Fast Paxos

Based on Multi-Paxos

,’ O
Reduces end-to-end message delays ‘,
for a replica to learn a chosen value

Needs 3f + 1 acceptors instead of 2f + 1

Vertical Paxos

Reconfigurable

e Enables reconfiguration while state machine
Is deciding on commands

e Uses auxiliary master for reconfiguration ops

® A special case of Primary-Backup protocol

In Search of an Understandable Consensus Algorithm

(Extended Version)

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it is as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is casier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

1 Introduction

Consensus algorithms allow a collection of machines
to work as a coherent group that can survive the fail-
ures of some of its members. Because of this, they play a
key role in building reliable large-scale software systems.
Paxos [15, 16] has dominated the discussion of consen-
sus algorithms over the last decade: most implementations
of consensus are based on Paxos or influenced by it, and
Paxos has become the primary vehicle used to teach stu-
dents about consensus.

Unfortunately, Paxos is quite difficult to understand, in
spite of numerous attempts to make it more approachable.

state space reduction (relative to Paxos, Raft reduces the
degree of nondeterminism and the ways servers can be in-
consistent with each other). A user study with 43 students
at two universities shows that Raft is significantly casier
to understand than Paxos: after learning both algorithms,
33 of these students were able to answer questions about
Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov's Viewstamped
Replication [29, 22]), but it has several novel features:

o Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

e Leader election: Raft uses randomized timers to
elect leaders. This adds only a small amount of
mechanism to the heartbeats already required for any
consensus algorithm, while resolving conflicts sim-
ply and rapidly.

e Membership changes: Raft’s mechanism for
changing the set of servers in the cluster uses a new
Jjoint consensus approach where the majorities of
two different configurations overlap during transi-
tions. This allows the cluster to continue operating
normally during configuration changes.

We believe that Raft is superior to Paxos and other con-

ZAB

Zookeeper’s Atomic Broadcast

A bit stricter ordering guarantees...

If leader fails, new leader cannot arbitrarily reorder uncommitted
state updates, or apply them starting from a different initial state

‘/ Intro

‘/Consistency Levels
‘/Gossip

‘/Consensus

» Snapshot

o Failure Detectors

o Distributed Broadcast
o Summary

Contents

Snapshots

Prototyping a Chandy-Lamport
Snapshot in F#

member this.SendBasicMessage (amount: Contents) (delay: int) (node: ServerEndpoint) = async {

let s = (!this.StateAtom) ()
printfn "Want to send %d, and my state is %d" amount s

let! invariant = this.HasEnoughToTransfer amount
if invariant then

// Extracting the amount from current state.
swap this.StateAtom
(fun f —

(fun result () —
if (result — amount >= @) then result - amount else result
) <| f()
) |> ignore

// Preparing a message with some amount to send.
let TessageToSend =
id = Guid.NewGuid().ToString()
contents = amount
address = ipAddress.ToString()
port = port
needAck = false
delay = 0
}
printfn "Money sent %d, money left %d" amount ((!this.StateAtom)())
// Sending a basic message to known endpoint.
do! this.N.SendMessageToNeighbor node messageToSend|

else
printfn "Not enough money to send %d: only %d left" amount s

member this.InitiateSnapshot () = async {

printfn "Initiating a snapshot!"

if this.ShouldTakeASnapshot = Yes then
do! this.PersistNodeState()
do! this.SendSnapshotMessageToOutgoingChannels()

member this.SendSnapshotMessageToOutgoingChannels () = async {
this.ConnectedNeighbors |> PSeq.iter (fun node —>
async {
printfn "Sending marker from %A:%A to %A:%A" ipAddress port node.Ip node.Port
let snapshot =

{

address = ipAddress.ToString()
port = port
}
do! this.N.SendMessageToNeighbor node snapshot
} |> Async.Start)
}

member this.PersistNodeState () = async {
this.ShouldTakeASnapshot <- AlreadyDone
this.StateSnapshot <- (!this.StateAtom) ()
Console.ForegroundColor <- ConsoleColor.Blue
printfn "xkkx Snapshot state of %A IS %A *kx" id (this.StateSnapshot.ToString())
Console.ForegroundColor <- ConsoleColor.White

member this.ReceiveSnapshotMessage (s: SnapshotMessage) = async {
let sender = { Ip = IPAddress.Parse s.address; Port = s.port }

// Remember, that current node has already received a snapshot message from this sender.
this.ReceivedMarkerFrom. [sender] <- true

printf "Received a marker message from %s:%d" s.address s.port

// In case current node hasn't taken a snapshot yet
if this.ShouldTakeASnapshot = Yes then

// Record it's own state.

do! this.PersistNodeState()

// Record the state of channel from sender to current node as {empty} set.
do! this.PersistChannelState sender

// And send snapshot messages to all outgoing channels.
do! this.SendSnapshotMessageToOutgoingChannels()

// In case current node has already recorded its local state by

// receiving a snapshot message earlier from some other neighbor

else
// We need to record a state of incomming channel from sender to current node,
// which is a set of messages received after current node recorded its state
// and before current node received a marker from the sender.
do! this.PersistChannelState sender

member this.ReceiveBasicMessage (m: Message) = async {
let sender = { Ip = IPAddress.Parse m.address; Port = m.port }

printfn "Already received a marker from %A: %A!" sender (this.ReceivedMarkerFrom.ContainsKey(sender))

if this.ShouldTakeASnapshot = AlreadyDone && not <| this.ReceivedMarkerFrom.ContainsKey(sender) then
printfn "Adding message $%d from %s:%d to the channel state, because this node has already taken it's local snapsho
this.ChannelStatesSnapshot. [sender] .Add m

else printfn "Received %d" m.contents

do! this.ProcessBasicMessage m

Assumes that channels are FIFO
All nodes can reach each other

All nodes are available

Basic Messages for regular data
Marker Messages for snapshots

Any node can initiate a snapshot at any moment

Initial state of the system

Natasha
$75

Natasha
$65

marker marker

Natasha
$65

Lena - Maggie = {empty}

Natasha
$70

Network delay for $10
me<ccaoce

Maggie - Lena = {empty}

marker

Lena - Natasha= {empty}
Maggie - Natasha = {empty}

Lena - Maggie = {empty}

NelfeNale!
$70

Network delay for $10 message

Maggie - Lena = {empty}

Lena - Natasha= {empty}
Maggie - Natasha = {empty}

Lena - Maggie = {empty}

Messages
to snapshot: $]O\

o

Maggie - Lena= {empty} Natasha - Lena={ empty}

Lena > Maggie = {empty}
Natasha -> Maggie ={| $10 |}

Lena - Natasha= {empty}
Maggie - Natasha={empty}

NelfeNale!
$70

T S
Alenas-MacBook-Pro:ChandyLamportFSharp lenok$ fsharpi SnapshotNod Alenas-MacBook-Pro:ChandylLamportFSharp lenok$ fsharpi Snapsho
el.fsx tNode2. fsx

[i

g
e ——— S ————

Alenas-MacBook-Pro:ChandyLamportFSharp lenok$ fsharpi SnapshotNode
3.fsx []

CODE

660 o2bve]
Alenas-MacBook-Pro:ChandyLamportFSharp lenok$ fsharpi SnapshotNod
el.fsx

Starting SnapshotNodel...Started a TCP server on port 7771...
Started a server listening on 127.0.0.1:7771

Adding 7772 as neighbor

Adding 7773 as neighbor

Sending a $5 to node2!

Want to send 5, and my state is 50

Money sent 5, money left 45

Initiating a snapshot!

Initiating a snapshot!

Sending marker from 127.0.0.1:7771 to 127.0.0.1:7772Sending marke
r from 127.0.0.1:7771 to 127.0.0.1:7773

Received a marker message from 127.0.0.1:7773

Received a marker message from 127.0.0.1:7772

Alenas-MacBook-Pro:ChandyLamportFSharp lenok$ D

Already received a marker from {Ip = 127.0.0.1;
Port = 7771;}: false!

Received 5

Received 5 dollars, now balance is 75

Sending a $10 to node3 with 1 seconds delay!

Want to send 10, and my state is 75

Money sent 10, money left 65

Received a marker message from 127.0.0.1:7771

} 1 |
Sending marker from 127.0.0.1:7772 to 127.0.0.1:7771
Sending marker from 127.0.0.1:7772 to 127.0.0.1:7773
Received a marker message from 127.0.0.1:7773

Alenas-MacBook-Pro:ChandyLamportFSharp lenok$ D

Already received a marker from {Ip = 127.0.0.1;
Port = 7772;}: false!
Adding message $10 from 127.0.0.1:7772 to the channel state, becau
se this node has already taken it's local snapshot, but haven't re
ceived a marker from sender.
Received 10 dollars, now balance is 10
Received a marker message from 127.0.0.1:7772
: ‘ \

Alenas-MacBook-Pro:ChandyLamportFSharp lenok$ I

‘/ Intro

v Consistency Levels

v Gossip

v Consensus
‘/Snapshot

» Failure Detectors

o Distributed Broadcast
o Summary

Contents

Failure detectors

Failure detectors are critical for:

e Leader election

e Agreement (e.g. Paxos)
e Reliable Broadcast

e And more

How are faults detected?

Heartbeat failure detection

300 ms | am healthy! > ¢300 ms
300 ms
300 ms | am healthy! ¢
¢3OO ms
300 ms | am healthy!
‘ Node failed @ No message I 00 ms
\
Suspected
Nodes List:

#1

—

Completeness

Strong Weak
Eventually all failed processes are Eventually all failed processes are
suspected by all correct once. suspected by at least one correct

Failed: Q Failed:
H2, #3 none

Failed: G

#H4

Detects every process as failed

Accuracy

Strong Weak Eventually strong Eventually weak

We can say that accuracy...

Restricts the mistake or
Limits number of false positives or, more precisely

Limits number of nodes that are mistakenly suspected by the correct nodes

Accuracy

Strong Weak
All correct processes are never At least 1 correct process is never
suspected suspected
#4 #4
@ Failed: @ Failed:
none H#1, #2

Failed:
#2

Failed:
HA4

* Correct node #5 isn’t in any suspected list ever

Failed:
#3

Failed:
#3

Accuracy

Eventual Strong Eventual Weak

After some pointin time, After some pointin time,

all correct processes are never at least 1 correct process is never
suspected suspected

Failed:
#4

Failed: e
#2

H4
Failed:
none

Failed:
#3

* Nodes could have had wrong suspicions in the past

Failure detector classes

Accuracy
Completeness || Strong | Weak | Eventual Strong Eventual Weak
Strong Perfect | Strong | Eventually Perfect | Eventually Strong
P N 4 oP oY
Weak Weak Eventually Weak
2 W o9 oW

FiG. 1. Eight classes of failure detectors defined in terms of accuracy and compieteness.

Perfect Failure Detector

* Strong Completeness + Strong Accuracy
* Possible only in synchronous system

» Uses timeouts (waiting time for a heartbeat arrival)

Eventually Perfect Failure Detector

» Strong Completeness + Eventual Strong Accuracy
* Timeouts are adjusted to be maximum or average

* Eventually timeout will be that big that all assumptionswill be correct

Eventually Perfect Failure Detector

300 ms | am healthy! > ISOO ms

iled ®
‘ Node failed No message 700 ms
Timeout to wait: 300 ms
List of suspected nodes: #1
Node recovered ©

| am healthy!

300 ms

>

Timeout to wait: 700 ms
List of suspected nodes: none

Failure Detectors in Consensus

Failure detectors are present in
almost every distributed system

SWIM

Scalable Weakly-consistent Infection-style process group Membership protocol

Strong completeness and configurable accuracy

1. Initiator picks random node from its membership list and sends a message to it.
If a chosen node doesn’t send acknowledgement after some time, initiator sends
ping request to other M randomly selected nodes to ask to send message to

suspicious node.
3. All nodes try to get acknowledgement from suspicious node and forward it to the

initiator. If none of the M nodes gets an acknowledgement, initiator marks the
node as dead and disseminates about failed node.

Choosing bigger number M of nodes you make accuracy bigger.

‘/ Intro

v Consistency Levels

v Gossip

v Consensus

v Snapshot

v Failure Detectors

» Distributed Broadcast
o Summary

Contents

Distributed Broadcast

Sending message to every node in the cluster

Messages can be lost
Nodes can fail

Various broadcast algorithms help us to choose between consistency of
the system and its availability.

Best-effort Broadcast

* Ensures the delivery of the message to all of the correct processes if
sender doesn’t fail during message exchange.

* Messages are sent using perfect point-to-point connection (no
message loss, no duplicates).

Reliable Broadcast

® I any correct node delivers the message, all correct nodes should
deliver the message

® Normal scenario results in O(N) messages

® Worst-case scenario (when processes fail one after another) — O(N)
steps with O(N?) messages.

°

Uses failure detector

Message has sender ID

Sender:#1
X=15

Sender:#1
X=15

Sender:#1
X=15

Nodes constantly check sender

@
& A[Are you ok?J— ‘@

If failure detected — message is relayed

Sender: #5
X=15

Sender: #5
X =15

Sender: #5
X=15

They can even fail one by one, other nodes will detect failure and relay message

If failure detector marks sender failed when it’s not, unnecessary
messages would be sent, that would impact performance, not
correctness.

However, if process will not indicate failure, then needed messages
won’t be sent.

Some reliable broadcasts do not use failure detectors...

What if a node processes a message, and then fails?...

Uniform Reliable Broadcast

If any node (doesn’t matter correct or crashed) delivers the message,
all correct nodes should deliver the message.

Works with failure detector, this way nodes don’t wait for the reply
from failed nodes forever.

All-Ack Algorithm

Node that initiated the broadcast sends

messages to all of nodes. Each node that
gets the message, relays it and considers
pending for now.

Each node keeps track of nodes from
which it received current message.

When process gets current
message from all of the
correct nodes, it considers
message delivered.

‘/ Intro

v Consistency Levels

v Gossip

v Consensus

v Snapshot

v Failure Detectors

v Distributed Broadcast
» Summary

Contents

Now | know distributed algorithms

Thank you and reach out!

Natallia Dzenisenka @nata_dzen

Alena Hall @lenadroid

